A Convergent Method for Linear Half-space Kinetic Equations
نویسندگان
چکیده
We give a unified proof for the well-posedness of a class of linear half-space equations with general incoming data and construct a Galerkin method to numerically resolve this type of equations in a systematic way. Our main strategy in both analysis and numerics includes three steps: adding damping terms to the original half-space equation, using an inf-sup argument and even-odd decomposition to establish the well-posedness of the damped equation, and then recovering solutions to the original half-space equation. The proposed numerical methods for the damped equation is shown to be quasi-optimal and the numerical error of approximations to the original equation is controlled by that of the damped equation. This efficient solution to the half-space problem is useful for kinetic-fluid coupling simulations.
منابع مشابه
A Sparse Grid Discontinuous Galerkin Method for High-Dimensional Transport Equations and Its Application to Kinetic Simulations
In this talk, we present a sparse grid discontinuous Galerkin (DG) scheme for transport equations and applied it to kinetic simulations. The method uses the weak formulations of traditional Runge-Kutta DG schemes for hyperbolic problems and is proven to be L stable and convergent. A major advantage of the scheme lies in its low computational and storage cost due to the employed sparse finite el...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملThe solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space
In this paper, to solve a linear one-dimensional Volterra integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of integral equation in terms of the basis functions. The examples presented in this ...
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملA hybrid analytical–numerical method for solving evolution partial differential equations. I. The half-line
A new method, combining complex analysis with numerics, is introduced for solving a large class of linear partial differential equations (PDEs). This includes any linear constant coefficient PDE, as well as a limited class of PDEs with variable coefficients (such as the Laplace and the Helmholtz equations in cylindrical coordinates). The method yields novel integral representations, even for th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014